3D Printing Canadian Topographies

by Scott Mackey, Geovis Project Assignment @RyersonGeo, SA8905, Fall 2016

Since its first iteration in 1984 with Charles Hull’s Stereo Lithography, the process of additive manufacturing has made substantial technological bounds (Ishengoma, 2014). With advances in both capability and cost effectiveness, 3D printing has recently grown immensely in popularity and practicality. Sites like Thingiverse and Tinkercad allow anyone with access to a 3D printer (which are becoming more and more affordable) to create tangible models of anything and everything.

When I discovered the 3D printers at Ryerson’s Digital Media Experience (DME) lab, I decided to 3D print models of interesting Canadian topographies, selecting study areas from the east coast (Nova Scotia), west coast (Alberta), and central Canada (southern Ontario). These locations show the range of topographies and land types strewn across Canada, and the models can provide practical use alongside their aesthetic allure by identifying key features throughout the different elevations of the scene.

The first step in this process was to learn how to 3D print. The DME has three different 3D printers, all of which use an additive layering process. An additive process melts materials and applies them thin layer by thin layer to create a final physical product. A variety of materials can be used in additive layers, including plastic filaments such as polylactic acid (PLA) (plastic filament) and Acrylonitrile Butadiene Styrene (ABS), or nylon filaments. After a brief tutorial at the DME on the 3D printing process, I chose to use their Lulzbot TAZ, the 3D printer offering the largest surface area. The TAZ is compatible with ABS or PLA filament of a 1.75 mm diameter. I decided on white PLA filament as it offers a smooth finish and melts at a lower temperature, with the white colour being easy to paint over.

Lulzbot TAZ

The next step was to acquire the data in the necessary format. The TAZ requires the digital 3D model to be in an STL (STereoLithography) format. Two websites were paramount in the creation of my STL files. The first was GeoGratis Geospatial Data Extraction. This National Resources Canada site provides free geospatial data extraction, allowing the user to select elevation (DSM or DEM) and land use attribute data in an area of Canada. The process of downloading the data was quick and painless, and soon I had detailed geospatial information on the sites I was modelling.

GeoGratis Geospatial Data Extraction

One challenge still remained despite having elevation and land use data – creating an STL file. While researching how to do this, I came across the open source web tool called Terrain2STL on a visualization website called jthatch.com. This tool allows the user to select an area on a Google basemap, and then extracts the elevation data of that area from the Consortium for Spatial Information’s SRTM 90m Digital Elevation Database, originally produced by NASA. Terrain2STL allows the users to increase the vertical scaling (up to four times) in order to exaggerate elevation, lower the height of sea level for emphasis, and raise the base height of the produced model in a selected area ranging in size from a few city blocks to an entire national park.

The first area I selected was Charleston Lake in southern Ontario. Being a southern part of the Canadian Shield, this lake was created by glaciers scarring the Earth’s surface. The vertical scaling was set to four, as the scene does not have much elevation change.

Once I downloaded the STL, I brought the file into Windows 10’s 3D Builder application to slim down the base of the model. The 3D modelling program Cura was then used to further exaggerated the vertical scaling to 6 times, and to upload the model to the TAZ. Once the filament was loaded and the printer heated, it was ready to print. This first model took around 5 hours, and fortunately went flawlessly.

Cape Breton, Nova Scotia was selected for the east coast model. While this site has a bit more elevation change than Charleston Lake, it still needed to have 4 times vertical exaggeration to show the site’s elevations. This print took roughly 4 and a half hours.

Finally, I selected Banff, Alberta as my final scene. This area shows the entrance to Banff National Park from Calgary. No vertical scaling was needed for this area. This print took roughly 5 and half hours.

Once all the models were successfully printed, it was time to add some visual emphasis. This was done by painting each model with acrylic paint, using lighter green shades for high areas to darker green shades for areas of low elevation, and blue for water. The data extracted from GeoGratis was used as a reference in is process. Although I explored the idea of including delineations of trails, trail heads, roads, railways, and other features, I decided they would make the models too busy. However, future iterations of such 3D models could be designed to show specific land uses and features for more practical purposes.

Charleston Lake, Ontario
Cape Breton, Nova Scotia
Banff, Alberta

3D models are a fun and appealing way to visual topographies. There is something inexplicably satisfying about holding a tangible representation of the Earth, and the applicability of 3D geographic models for analysis should not be overlooked.


GeoGratis Geospatial Data Extraction. (n.d.). Retrieved November 28, 2016, from http://www.geogratis.gc.ca/site/eng/extraction

Ishengoma, F. R., & Mtaho, A. B. (2014). 3D Printing: Developing Countries Perspectives. International Journal of Computer Applications, 104(11), 30-34. doi:10.5120/18249-9329

Terrain2STL Create STL models of the surface of Earth. (n.d.). Retrieved November 28, 2016, from http://jthatch.com/Terrain2STL/



Story Swipe Map – 2011 / 2015 Election Results

Geovis Course Assignment, SA8905, Fall 2015 (Rinner)
Author: Austin Pagotto
Link to Web app: http://arcg.is/1Yf8Yqn
(Note: project may have trouble loading using Chrome – try Internet Explorer)

Project Idea:

The idea of my project was to comprehensively map the past two Canadian federal election results. When looking for visualization methods to compare this data I came across the Swipe feature on the ArcGIS Online story maps. Along with all the interaction features of any ArcGIS online web map, this feature lets the user swipe left and right to reveal either different layers or in my case different maps. As you can see in the screenshot below the right side of the map is showing the provincial winners of the 2015 election while the left side of the map is showing the provincial winners of the 2011 election. The middle line in the middle can be swiped back and forth to show how the provincial winners differed in each election.


Project Execution:

The biggest problem in executing my project was that the default ArcGIS online projection is web Mercator, which greatly distorts Canada. I was able to find documentation from Natural Resources Canada explaining how Lambert Conformal Conic basemaps can be uploaded to an ArcGIS online map and replace the default basemaps.

Another problem with my visualization of the project was that when zoomed to a national scale level, a lot of the individual polling divisions became impossible to see. This creates an issue because each polling division is designed to have a somewhat equal population count in them. So the small ones aren’t less important or less meaningful than the big ones. To solve this, when zoomed out, I changed the symbology to show the party that had won the most seats in each province, so it would show the provincial winner as seen in the previous screenshot. When zoomed in however the individual polling divisions become visible, showing the official name at increased zoom levels. The years of each election were added to the labels to help remind the user what map was on what side.

The methodology I used to create this project was to create two different online maps, one for each election year. Then I created the swipe web app which would allow both of these maps to be loaded and swipeable between the two. It was important here to make sure that all the settings for each map were the exact same (colors, transparency and attribute names).

The data that is shown on my maps were all downloaded from ArcGIS online to Arcmap Desktop and then zipped and reuploaded back to my project.  It was important to change my data’s projection to Lambert Conformal Conic before uploading it so that it wouldn’t have to be reprojected again using ArcGIS online.

This project demonstrated how web mapping applications can make visualizing and comparing data much easier than creating two standalone maps.

Data Sources: Projection/Basemap information from Natural Resources Canada
Election Data from ESRI Canada (downloaded from ArcGIS Online)

Link to Web app: http://arcg.is/1Yf8Yqn