Visualizing Toronto Fire Service Response

By: Remmy Zelaya

Geovis Project Assignment @RyersonGeo, SA8905, Fall 2019

CARTO is an online tool to create online maps, dashboards, and perform spatial analysis. Basic membership is free and no coding experience is required to get your maps online. I creating my project on visualizing Toronto Fire Service data entirely in CARTO. The embedded map is below or you can click here to see it in a new tab.

I’ll briefly explain how I created my map and how you can too. 

Before we get to CARTO, we’ll need our data. The City of Toronto’s Open Data portal contains lots of free data on city services and life. From the portal I downloaded shapefiles of TFS stations and run areas (catchment areas for fire stations), and a CSV file of fire incidents.

Next create a CARTO account if you don’t already have one. Once logged in, the CARTO home page will have links to “Getting Started”, “New Map”, and “New dataset.” The Getting Started page is an excellent tutorial on CARTO for first time users. 

Before we start making a map, we will need to upload our data. Click “new dataset” and follow the prompts. Note, CARTO requires shapefiles to be archived in a ZIP file. 

Once that is done, click on “new map” and add your uploaded datasets. CARTO will add your datasets as layers to the map, zoom to layer extent, and automatically create a point layer out of the CSV file. 

The map is on the right side of the screen and a control panel with a list of the uploaded layers is on the right. From here we can do a couple of things;

  • Re-title our map by double clicking on the default title
  • Rearrange our layers by dragging and dropping. Layer order determines drawing order. Rearrange the layers so that the stations and incidents points are on top of the run area polygon.
  • Change the base map. I’ve used Positon Lite for a simple and clean look. Note, CARTO has options to import base maps and styles from other site, or to create your own.
  • Click on the layer card to bring up that layer’s options menu.

Let’s click on the fire stations layer. As with the map we can rename the layer by double clicking on the name. The layer menu has five panes, Data, Analysis, Style, Pop-Up, Legend. The Style pane will be selected by default. The first section of the Style pane is aggregation, which is useful for visualizing dense point layers. We’ll keep the default aggregation of By Point. Section 2 Style controls the appearance of the layer. I’ve changed my point colour to black and increased the size to 12. I need the stations to stand out from the incident points. 

Now with the incidents layer, I decided to use the Animation aggregation option. If the point layer has a column representing time, we can use this to create an animation of the points appearing on the map over time. This option creates a time slider widget at the bottom of the map with a histogram representing the amount of fires over time.

With the run areas, I decided to create a choropleth map where run areas with higher amount of incidents would appear darker on the map. To do this, I first need to determine how many incidents points fall into each run area. Go to the run area menu, click on Analysis, then “+Add New Analysis.” CARTO will navigate to a new page with a grid of its spatial analysis options. Click on “Intersect and Aggregate” which finds “overlapping geometries from a second layer and aggregate its values in the current layer.”

CARTO will navigate back to the Analysis pane of the run area menu and display options for the analysis. Run area should already be selected under Base Layer. Choose incidents as the target layer, and under Measure By select count. CARTO will display a message stating new columns have been added to the data, count_vals and count_vals_density. 

There will be an option to style the analysis. Click on it. Choose “by value” for Polygon Colour, and choose the new count_vals_density for Column, then select an appropriate colour scheme.

CARTO’s widget feature creates small boxes on the right of the map with useful charts and stats on our data. You click on the Widgets pane to start add new widgets from a grid (as with Analysis) or can add new widgets based on a specific layer from that layer’s Data pane. CARTO has four types of widgets;

  • Category creates a horizontal bar chart measuring how many features fit into a category. This widget also allows users to filter data on the map by category. 
  • Histogram creates a histogram measuring a selected variable
  • Formula displays a statistic on the data based on a selected formula
  • Time Series animates a layers according to its time information.

As with layers, clicking on a widget brings up its option menu. From here you can change the source data layer, the widget type, and configure data values. For my Fires by Run Area widget, I used the incidents layer as the source, aggregated by id_station (fire station ID numbers) using the count operation. This widget counts how many incidents each station responded to and displays a bar chart of the top 5 stations. Clicking on a station in the bar chart will filter the incidents by the associated station. After this, I added four formula based widgets.

We’re nearly done. Click on the “publish” button on the bottom left to publish the map to the web. CARTO will provide a link for other users to see the map and an HTML embed code to add it to a web page. I used the embed code to added the embedded map to the beginning of the post.

Thanks for reading. I hope you’ll use CARTO to create some nice maps of your own. You may be interested in checking out the CARTO blog to see other projects built on the platform or the Help section for my information on building your own maps and applications.

The Cooling Effect of the 1991 Eruption of Mount Pinatubo, Philippines

By Clarisse Reyna

Geovis Course Assignment, SA8905, Fall 2015 (Rinner)

This is a time series map showing interpolated temperature change. Mount Pinatubo is located in the island of Luzon, Philippines. It erupted in 1991, which marked the second largest volcanic eruption in the 20th century. This caused a cooling effect as it released significant amounts of volcanic gases, aerosols and ash that increases albedo. This means that there is an increase in solar radiation being reflected, which decreases the amount of solar radiation reaching the troposphere and the surface. Since there is less solar radiation at the troposphere and the surface, it causes a temperature decrease. This is exactly what took place when Mount Pinatubo erupted in 1991. After the eruption, there was an observed surface cooling that took place in the Northern Hemisphere of around 0.5 to 0.6 degrees Celsius (Self et al. 1999).

In this time series map, interpolated temperatures in the Philippines from 1988 to 1995 is presented. What you should be able to see is that as time passes after the eruption (1991), there is a significant increase in blue areas which indicate lower temperatures. Originally, the years included would have been from 1985 to 1995. However, there are unusually low temperatures in 1987. In fact, the lowest ever recorded temperature in Manila was on February 4, 1987, with a temperature of 15.1 degrees Celsius. As you can see in the picture below, 1987 has large blue areas, indicating low temperatures. This may cause confusion when viewing the final time series visualization, so it was omitted from the final geovisualization project.

PrintScreen_TimeSlider3

The purpose of including temperatures before the eruption in 1991 is so that the viewer is able to see temperature trends before the cooling occurred. This allows viewers to compare temperature trends before the eruption to temperature trends after the eruption. The years included went up to 1995 because this was the last average temperature where it shows decreasing temperatures from 1991 in most of the cities.

The temperature data in this time series geovisualization were taken from a website called Weather Spark. The data taken from this source was yearly temperature averages from 1988 to 1995 in the Philippine cities of Aparri, Batangas, Bohol, Catarman, Coron, Manila, Davao, Lapu Lapu, Pasig, El Nido, Legazpi, and Pagudpud. Temperature data for the city of Boracay was not available so the province of Malay was used in place of it. Another province used was Bulacan. These areas are very spread apart in the Philippines. Therefore this gives a more accurate representation of temperature patterns during interpolation since the data points are spread apart and covers each part of the country. Lastly, the Philippine boundary shapefile was taken from a website called PhilGIS.

The technology used for this time series visualization was Time Slider, which is available in ArcMap (in versions ArcGIS 10.0 and up). For each year, the data taken from Weather Spark for each city or province was interpolated using the Inverse Distance Weighted method. Therefore, a raster was created for every year. Since there are eight years that are being included in this visualization, eight rasters were created. After creating an interpolation raster for each year, a raster catalog was created, and each of these rasters were added onto the raster catalog. After the rasters were added, time was enabled on the raster catalog layer.
PrintScreen_TimeSlider

When time is enabled on a layer, ArcMap allows you to use the Time Slider tool to create the time series visualization. This time slider tool allows you to preview what the time series visualization will look like. You can then export the time series visualization to an .avi file by clicking on the icon circled in red in the picture below.

PrintScreen_TimeSlider2

References

Country Boundary. (2013). In PhilGIS. Retrieved from http://philgis.org/freegisdata.htm

Historical Weather. In WeatherSpark Beta. Retrieved from https://weatherspark.com/

Self, S., Zhao, J., Holasek, R., Torres, R., & King, A. (1999). The Atmospheric Impact of the 1991 Mount Pinatubo Eruption. U.S. Geological Survey.